Local asymptotic minimax risk bounds in a locally asymptotically mixture of normal experiments under asymmetric loss
نویسندگان
چکیده
Local asymptotic minimax risk bounds in a locally asymptotically mixture of normal family of distributions have been investigated under asymmetric loss functions and the asymptotic distribution of the optimal estimator that attains the bound has been obtained.
منابع مشابه
Minimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions
This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...
متن کاملMinimax Risk Bounds in Extreme Value Theory
Asymptotic minimax estimators of a positive extreme value index under zero-one loss are investigated in the classical i.i.d. setup. To this end, we prove the weak convergence of suitable local experiments with Pareto distributions as center of localization to a white noise model, which was previously studied in the context of nonparametric local density estimation and regression. From this resu...
متن کاملEstimating a Bounded Normal Mean Relative to Squared Error Loss Function
Let be a random sample from a normal distribution with unknown mean and known variance The usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. In many practical situations, is known in advance to lie in an interval, say for some In this case, the maximum likelihood estimator...
متن کاملEfficiency in Asymptotic Shift Experiments∗
This paper generalizes classical results on efficient point estimation in parametric models. The asymptotic optimality of maximum likelihood estimators is, generally, tied to both the regularity of the statistical model and symmetry of the loss function in the efficiency criterion. We examine the possibility of locally shifting or “bias-correcting” the MLE to achieve efficiency. In parametric m...
متن کاملThe Asymptotic Minimax Risk for the Estimation of Constrained Binomial and Multinomial Probabilities
In this paper we present a direct and simple approach to obtain bounds on the asymptotic minimax risk for the estimation of constrained binomial and multinomial proportions. Quadratic, normalized quadratic and entropy loss are considered and it is demonstrated that in all cases linear estimators are asymptotically minimax optimal. For the quadratic loss function the asymptotic minimax risk does...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006